



## AREAS ADVERTISEMENT 2022

## CPO 16, CPO 17-1 & CPO17-2 AREAS Southwestern Llanos Heavy Oil Trend







- The data, maps, geological models, volumetric calculations, seismic interpretations, well correlations and production graphs that are going to be presented today were a compilation of reports handed by the Operator Companies to the ANH.
- The purpose of this compilation is to offer and understanding of the hydrocarbon systems and the remaining prospectivity of the areas located in the Llanos Heavy Oil Belt





| Location & Data: CPO 16, CPO 17-1 & CPO 17-2 |
|----------------------------------------------|
| Infrastructure & Nearby Fields               |
| Geological Framework                         |
| Rio Ariari (CPO 16 & CPO 17-1)               |
| Avellana (CPO17-1)                           |
| Merlin (CPO 17-1 & CPO 17-2)                 |
| Trasgo (CPO 17-2)                            |
| Summary & Conclusions                        |
|                                              |







## **LOCATION & DATA**



#### Location: CPO 16, CPO 17-1, CPO 17-2





#### **Block Areas**

- CPO 16 (250, 993Ha).
- CPO 17-1 (296,916Ha).
- CPO 17-2 (266,406 Ha).

#### Departments

#### Meta







Minenergía

#### 2D Seismic Surveys (16 Surveys)

- Ariari-81
- Cano Sur 2D-2005 .
- Cano Sur 2D-2006
- Cano Sur 2D-2008
- Cano Sur 2D-2012 .
- Cpo16 2D-2010
- Granada A-87
- Granada A-88

- Granada-72 .
- Granada-89
- Llanos-71
- Macarena 2D-2005
- Meta Guape-89
- Meta Guape-90 .
- Rio Ariari 2D-2007 .
- . San Juan-87

#### **3D Seismic Surveys (2 Surveys)**

- Rio Ariari 3D-2009 (29 Km<sup>2</sup>)
- Rio Ariari 3D-2011 (396 Km<sup>2</sup>)



#### CPO 16: Well Data (64 Wells)





Minenergía



|              | WELLS | TD (ft) | YEAR          | NAME           | WELLS | TD (ft)         | YEAR          |
|--------------|-------|---------|---------------|----------------|-------|-----------------|---------------|
| Acanto-1     | 1     | 5602    | 2011          | Guamalito-1    | 1     | Not<br>reported | 1982          |
| Anturio-1    | 1     | 5595    | 2011          | Heliconia      | 4     | 1325            | 2011-<br>2014 |
| Arama-1      | 1     | 4334    | 2005          | La Esperanza-1 | 1     | Not<br>reported | 1982          |
| Borugo       | 2     | 5163    | 2011          | Mochelo Sur    | 2     | 3565            | 2014          |
| Cadillo-1    | 1     | 5207    | 2013          | Mochelo        | 7     | 2706            | 2010-<br>2014 |
| Calandria-1  | 1     | 6093    | 2011          | Pegaso-1       | 1     | 2545            | N/A           |
| Canaguaro-1  | 1     | 6600    | 1988          | RA-Acanto      | 4     | 5474            | N(A           |
| CPO 16 EST   | 10    | 2966    | 2011-<br>2014 | RA-Mochelo     | 2     | 5928            | 2014          |
| El Tablazo-1 | 1     | Not     | 1982          | RA Moradillo   | 1     | 5985            | N/A           |
| ES           | 7     | 2180    | 2012          | Rio Curia-1    | 1     | 350             | 1982          |
| Fontana-1    | 1     | 7800    | 2013          | SA             | 9     | 3362            | 1981          |
| Fuente-1X    |       |         |               | San Juan-1     | 1     | 6962            | 1988          |
| (1821-1X)    | 1     | 9168    | 1973          | Tatama-1HZ     | 1     | 5041            | 2012          |









#### 2D Seismic Surveys (18 Surveys)

- Ariari-81
- Cano Sur 2D-2005
- Cano Sur 2D-2006
- Cano Sur 2D-2008
- Cano Sur 2D-2009
- Cano Sur 2D-2012
- Chigüiro Oeste 2D-2009
- CPO 112D-2009
- CPO 17 2D-2010

- Granada A-87
- Granada B-87
- Granada-72
- Llanos-70
- Llanos-71
- Melua Oriental-91
  - Meta Central-91
  - Rio Ariari 2D-2007
  - Rio Ariari-92

#### 3D Seismic Surveys (1 Survey)

Chigüiro Oeste 3D-2011 (134 Km<sup>2</sup>)



#### CPO 17-1: Well Data (46 Wells)







| NAME              | WELLS | TD (ft)         | YEAR          | NAME                  | WELLS | TD (ft)         | YEAR          |
|-------------------|-------|-----------------|---------------|-----------------------|-------|-----------------|---------------|
| Avellana-1        | 1     | 4907            | 2010          | Las Brujas-1:         | 1     | 2820            | 1992          |
| Chafurray-5:      | 1     | Not<br>reported | 1946          | Merlin                | 7     | 1926            | 2011-<br>2012 |
| Chigüiro<br>Oeste | 3     | 4875            | 2009          | Mielero-1:            | 1     | 4369            | 2012          |
| CPO-17 Est        | 11    | 2662            | 2010-<br>2014 | Ninfa Est             | 1     | Not<br>reported | 2013          |
| CPO-17 W          | 2     | 1730            | 2013          | Nopal-1:              | 1     | 3806            | 2012          |
| Dara-1            | 1     | 5112            | 2012          | Pichilingo-1,<br>1St: | 1     | 4710            | 2012          |
| Dorcas-1:         | 1     | 2275            | 2011          | Prados-1:             | 1     | 5530            | 2011          |
| El Valle-1:       | 1     | 5950            | 2017          | Puertos-1             | 1     | 4184            | 2010          |
| Godric Norte      | 2     | 3589            | 2017          | Ra-Lapon-<br>1d:      | 1     | 4027            | 2014          |
| Godric-1:         | 1     | Not<br>reported | 2013          | SA                    | 3     | 4308            | 1981          |
| Hadas-1:          | 1     | 3360            | 2008          | Serrana-1:            | 1     | 5216            | 2010          |
| Hechicera-1       | 1     | 3088            | 2009          | Tarabita-1:           | 1     | 6670            | 2011          |



#### **CPO 17-2: Seismic Data**







#### 2D Seismic Surveys (18 Surveys)

- Ariari-81
- Cano Sur 2D-2005
- Cano Sur 2D-2006
  L
- Cano Sur 2D-2008
- Cano Sur 2D-2009
- Chigüiro E 2D-2007
- CPE 2D-2009
- CPO 11 2D-2009
- CPO 17 2D-2010

- Llanos-70
- Llanos-71
- Llanos-81
- Manacacias-81
- Manacacias-88
- Meta central-91
- Meta-86
- Puerto Lleras-91
- Rio Ariari-92

#### **3D Seismic Surveys** (2 Surveys)

- Chigüiro Este 3D-2010 (85 Km<sup>2</sup>)
- Trasgo 3D-2014 (269 Km<sup>2</sup>)



#### CPO 17-2: Well Data (18 Wells)







| NAME         | WELLS | TD<br>(ft) | YEAR |
|--------------|-------|------------|------|
| Andale       | 2     | 3270       | 2014 |
| Arboleda-1   | 1     | 2856       | 2014 |
| Azulejo-1    | 1     | 4237       | 2011 |
| Camelon-1    | 1     | 2730       | 2012 |
| El Viento-1  | 1     | 2848       | 1981 |
| Paso Real-1  | 1     | 2363       | 1973 |
| Reto         | 3     | 2087       | 2012 |
| SA           | 2     | 2835       | 1980 |
| Sanciro-1    | 1     | 2916       | 2014 |
| SM           | 2     | 2903       | 1981 |
| Trasgo-1,2,3 | 3     | 2914       | 2011 |



#### CPO 16, CPO 17-1 & CPO 17-2: Infrastructure







#### Main Infrastructure nearby

#### **CPO 16**

- Apiay *c.a*. 95 Km
- Castilla *c.a*. 66 Km
- Villavicencio *c.a*. 96 Km

#### **CPO 17-1**

- Apiay *c.a*. 92 Km
- Castilla *c.a*. 74 Km
- Villavicencio *c.a.* 109 Km

#### **CPO 17-2**

- Apiay *c.a*. 119 Km
- Castilla *c.a*. 115 Km
- Villavicencio *c.a*. 145 Km
- Rubiales *c.a*. 152 Km



#### CPO 16, CPO 17-1 & CPO 17-2: Fields Nearby



Minenergía



#### **CPO 16**

- Camoa *c.a*. 57 Km
- Castilla *c.a*. 65 Km
- Apiay *c.a*. 92 Km
- Valdivia *c.a*. 134 Km

#### CPO 17-1

- Camoa *c.a*. 45 Km
- Castilla *c.a*. 80 Km
- Apiay *c.a*. 93 Km
- Valdivia *c.a*. 99 Km

#### CPO 17-2

- Camoa *c.a*. 85 Km
- Castilla *c.a*. 122 Km
- Apiay *c.a*. 120 Km
- Valdivia *c.a*. 78 Km
- Rubiales *c.a*. 152 Km







## **GEOLOGICAL FRAMEWORK**



- The Llanos Orientales Basin (LIBA) is the eastern sub-Andean foreland of the Eastern Cordillera
- At the east it is bounded by the Guyana Shield
- At the **south** is bounded by the **Macarena Range** and **Vaupes** basement archs
- The Llanos Basin has a prolific exploratory history that got strength in the 80s after the Caño Limon - Coveñas discovery





GUAYABO

BASEMENT

Area Rio Ariari

BASEMENT

(GUYANA SHIELD)

Edited from: DCP, Halliburton, Oct. 2007





- Usually main reservoirs are located in Carbonera (C5 – C7) and Mirador Formations (fluvial and estuary deposits).
- There are another common reservoir from Eocene - Oligocene (?) age known as basal sandstones usually above the unconformity above Paleozoic
- Paleozoic is thought to be a good source and reservoir as well with a likely potential of gas







- The three blocks CPO 16, CPO 17-1. CPO 17-2 are located in what is known as the **Heavy Oil Belt** where fields such as Rubiales and Hamaca are located
- The oil is Chichimene Castilla oil type, an oil ranging from 8 to 14°
- There is a **hydrodynamic** important component with the entry of water at the Macarena Range
- In some areas the blocks are located below the biodegradation line
- A mixture of oils could be found as well



#### Structural Geology and Basin Evolution



- The western zone of this province is characterized by a tectonized sequence (Cambrian – Ordovician) which corresponds to a folded belt (Caledonian Orogen)
- The front of the deformed belt rests over the north-western flank of the Voragine paleo high and is affected by normal faults with N-S orientation
- At the eastern part of this province there is an structural domain with normal and reverse faults
- Most of the structures into the CPO 16, CPO 17-1 & CPO 17-2 are associated with normal faults





General tectonic evolution of the Llanos Basin. Taken from Horton et al (2010a)



#### Petroleum System and Type of Traps





- The hydrocarbon accumulations are related to a proven system (Gacheta-Mirador) that had a expulsion in the Eocene-Oligocene
- The hydrocarbons were migrated to Upper Cretaceous to Oligocene reservoirs
- A secondary system could be associated to the Palaeozoic Sequence with reservoirs accumulating dry gas
- Remind that there is an important hydrodynamic component that tilt the traps as shown in the picture







#### Minenergía

# **RIO ARIARI (CPO 16 & CPO 17-1)**



#### **Rio Ariari Location & Wells (53)**





1



| NAME              | WELLS | TD (ft)         | YEAR | NAME         | WELLS | TD (ft) | YEAR      |
|-------------------|-------|-----------------|------|--------------|-------|---------|-----------|
| Acanto-1          | 1     | 5602            | 2011 | Mochelo Sur  | 2     | 3356    | 2014      |
| Anturio-1         | 1     | 5595            | 2011 | Mochelo      | 7     | 2706    | 2010-2014 |
| Asarina-1         | 1     | 5881            | 2010 | Nopal-1      | 1     | 3806    | 2012      |
| Borugo-1          | 2     | 5325            | 2011 | Pichilingo   | 2     | 4710    | 2012      |
| Cadillo-1         | 1     | 5207            | 2011 | RA-Acanto    | 4     | 5474    | 2014      |
| Cafeto Este-<br>1 | 1     | 4464            | 2012 | RA-Asarina4D | 1     | 4873    | 2014      |
| Calandria-1       | 1     | 6093            | 2011 | RA-Lapon     | 1     | 4027    | 2014      |
| Chafurray         | 1     | Not<br>reported | 1946 | RA-Mochelo   | 2     | 5928    | 2014      |
| -                 |       |                 |      | RA-Moradillo | 1     | 5985    | 2014      |
| ES                | 13    | 3087            | 2011 | Rio Ariari   | 2     | 5028    | 2010      |
| Heliconia         | 4     | 1766            | 2014 | SA-13        | 1     | 5018    | 1981      |
| Mielero-1         | 1     | 4369            | 2012 | Tatama       | 2     | 5150    | 2012      |







#### **BORUGO - 1**

- Well drilled by Petrominerales in 2011 with a TD of 5,259'.
- The thermal maturity for the interval 5420-30' is considered to be very high, possibly beyond the dry gas window

#### **ES 17**

- Stratigraphic well drilled by Petrominerales in 2009 with a TD of 4,994'
- The well reached Ordivician in age supported in some Chitinozoa badly preserved and absence of spores

#### CADILLO - 1

- Well drilled by Petrominerales in 2013 with a TD of 5,207'
- The studied Tertiary section for this well is immature to marginally mature for the generation of liquid hydrocarbons
- The Paleozoic section is overmature for the generation of hydrocarbons
   AGENCIA NACIONAL DE HIDROCARBUROS







#### **RIO ARIARI - 1**

- Well drilled by Petrominerales in 2009 with a TD of 4,859'
- The main target of the well was the Mirador Formation
- The cumulative production of the well up to 2016 was 20,299 bbl

#### **MOCHELO - 1**

- Well drilled by Petrominerales in 2010 with a TD of 5,308'
- The well reported in 2016 a cumulative production of 548 bbl

#### TATAMA HZ - 1

- Well drilled by Petrominerales in 2012 with a TD of 5,041'
- The well proved heavy oil in the Mirador Formation
- The well reported a cumulative production in 2016 of 194,146 bbl

















- Wells such as: Asarina 1, Calandria 1, Lapon – 1D, Haliconia - 2D and Rio Ariari – 2 showed the highest gas increases in the Paleozoic
- The shows were determined by gas chromatography but none of them have undergone formal tests
- A gross calculation for gas reserves into the Paleozoic was calculated by the operator company

| Preliminary Summary of Undiscovered Gas Initially-In-Place With Paleozoic |                 |                   |                  |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------|-------------------|------------------|--|--|--|--|--|
| Estimate                                                                  | Gross           | Gross             | Gross            |  |  |  |  |  |
|                                                                           | Undiscovered    | Undiscovered      | Undiscovered     |  |  |  |  |  |
|                                                                           | Free GIIP (Bcf) | Sorbed GIIP (Bcf) | Total GIIP (Bcf) |  |  |  |  |  |
| Low Estimate                                                              | 982             | 34                | 1,016            |  |  |  |  |  |
| Best Estimate                                                             | 3,300           | 228               | 3,528            |  |  |  |  |  |
| High Estimate                                                             | 10,727          | 1,290             | 12,017           |  |  |  |  |  |

Figure 32: Preliminary Summary of Undiscovered Gas Initially-In-Place with Paleozoic (Sproule)







- The whole production history has been accompanied by a high BSW
- From 2009 to 2010 both water and oil production increase simultaneously. The main input came from Mochelo and Rio Ariari
- From 2010 to 2013 the production came from the fields Heliconia, Mochelo, Tatama and Mochelo Sur. BSW increases more than Oil
- After 2013 BSW increases exponentially, decreasing naturally the Oil production. The production came from Acanto, Heliconia, Mochelo, Rio Ariari and Lapon
- The cumulative production to 2013 was



High mobility rate water/oil



#### Last Volumetric Reported in Rio Ariari Field





# 3 Prospective Areas

\*Pmean: Pmean recoverable oil 15% recovery factor, unrisked



- In 2014 de recovery factor was established in 7,7%
- New areas were added in 2014 and 2015 drilling 12 wells
- Using a recovery factor of 15%, a **Pmean** of **recoverable oil unrisked** was calculated for some opportunities
- Cafeto Oeste (Lead): 194 MMbbl
- Cafeto Este (Prospect): 28,8 MMbbl
- Nopal Valley (Prospect): 115,5 MMbl
- The last value reported of OOIP in the Rio Ariari area was of 1,805 MMbbl







## AVELLANA (CPO 17-1)







- The block is located nearby the municipalities of Puerto Lopéz and San Martin
- Inside the Chiguiro Oeste 3D 2011 4 wells have been drilled: Chiguiro West 1, Chiguiro West 1ST and Avellana -1
- Preliminary results from the well tests by mean of PCP suggests the presence of heavy hydrocarbons of low mobility
- Its necessary a more detailed evaluation of an optimum strategy for evaluation and future production







- Avellana Prospect: Mirador Formation as main target
- Type of Trap: Stratigraphic in channels
- TD: 4908' MD/TVD. Top of Mirador Formation found at 4460'
- Spud date: 8<sup>th</sup> of August of 2010
- Reserves: Due to the lack of information the calculation of prospective resources have not been carried out

Strike seismic Line: It could be observed the projection of the well Avellana - 1



#### **Avellana – 1 Well logs and Petrophysics**





- Three test were carried out in the Mirador Formation with one of them Test 3 (4478'-4490') producing 0,18 BOPD with a BSW of 99%
- The petrophysics in the Avellana-1 well gave as result a Net Pay of 6', mean Porosity of 28% and So of 75% and
- The API gravity reported in the well is 9.3°

| Interval<br>(ft) | Typ<br>e | Total<br>Gas% | C1<br>(ppm) | C2<br>(ppm) | C3<br>(ppm) | iC4<br>(ppm) | nc4<br>(ppm) | iC5<br>(ppm) | nC5<br>(ppm) |
|------------------|----------|---------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|
| 4460-4470        | FG       | 0.002         | 139.2       | 15.5        | 13          | 0            | 0            | 0            | 0            |
| 4475-4490        | FG       | 0.11          | 30.2        | 23.4        | 70.4        | 17.3         | 31.8         | 49.7         | 10.1         |
| 4496-4506        | BGG      | 0.001         | 38          | 11          | 0           | 0            | 0            | 0            | 0            |
| 4506-4530        | FG       | 0.22          | 1210        | 28.7        | 23.3        | 16.2         | 0            | 0            | 0            |
| 4530-4572        | BGG      | 0.02          | 156         | 12.5        | 10.2        | 20.3         | 12.9         | 0            | 0            |
| 4572-4591        | FG       | 0.1           | 511         | 41          | 22          | 11           | 0            | 0            | 0            |
| 4591-4636        | BGG      | 0.01          | 34          | 29.6        | 14          | 9            | 0            | 0            | 0            |
| 4636-4653        | FG       | 0.1           | 523         | 45          | 11          | 4            | 0            | 0            | 0            |



#### Structural Map: Top of Lower Mirador



uro todos Minenergía





- Two structures were drilled based on the structural map of the Lower Mirador
- At the **north** the structure drilled by the wells **Dara**
- At the south the structure drilled by the well Avellana - 1

AGENCIA NACIONAL DE HIDROCARBUROS



#### Well Correlation: Chiguiro West – 1 and Avellana-1



El futuro es de todos Minenergía









## MERLIN (CPO 17-1 & CPO 17-2)





- Merlin is located in in the southwestern part of the Llanos Orientales Basin in the Meta Department
- The area covered the municipalities of Puerto Lleras, Mapiripán, Puerto Rico and Puerto Concordia



AGENCIA NACIONAL DE HIDROCARBUROS



#### Merlin - 1

- Well drilled by Hocol in 2011 with a TD of 2683'
- The target of the well was to reach the Oligocene Basal Sandstones
- During the initial tests the well shows a higher capacity of production than the estimated one
- Vapor injection was performed using the well Merlin 6IV
- The well, limited by the design of the tests reached a production of 350 bbl per day that fall down afterwards

#### **CPO 17 EST - 2**

- Well drilled by Hocol in 2010 with a TD of 2834'
- The target of the well was to reach the C8 member of the Carbonera Formation (Basal SS of the Oligocene)
- Between 2170' and 2180' good oil shows were found
- The C7 had good oil shows between (2400' and 2410')
- Very good oil shows were found in the interval 2665' to 2713' in the Oligocene Basal Sandstone















- Post drilling model of the Merlin discovery
- The fault throw is about 20 to 35' with NNW – SSE orientation
- In the cores, evidence of kinematic indicators can be seen





Petrophysics of the well Merlin – 1

El futuro es de todos

Minenergía

- Oligocene basal sands with petrophysical oil saturation calculated in two different intervals: 2645-2650' and 2660'-2685'
- Effective porosities around **30%** could be observed in the cleanest sections of the sandstones intervals





El futuro es de todos Minenergía



Main structural elements and framework from the southern Llanos Domain could be appreciated





#### **Geostatistical Facies Distribution**



El futuro es de todos Minenergía



#### Volumetrics and Calculations



El futuro es de todos Minenergía

#### MPZ (Main Producer Zone)

|                         | PARÁMETROS PARA EL CÁLCULO DE RECURSOS DEL PROSPECTO MERLIN-MPZ BASE |           |        |        |        |        |        |        |         |  |  |
|-------------------------|----------------------------------------------------------------------|-----------|--------|--------|--------|--------|--------|--------|---------|--|--|
| FORMACIÓN SSBO          |                                                                      |           |        |        |        |        |        |        |         |  |  |
| PARÁMETROS              | Unidad                                                               | Distrib.  | P99    | P90    | P50    | P10    | P1     | Mean   | P10/P90 |  |  |
| Volumen Roca - Hcs      | K Acre-Pie                                                           | LogNormal | 684    | 692    | 703    | 714    | 724    | 703    | 1       |  |  |
| Area Promedio           | Acres                                                                | LogNormal | 17,216 | 17,388 | 17,644 | 17,912 | 18,141 | 17,649 | 0       |  |  |
| Espesor Gross Prom      | Pies                                                                 | LogNormal | 39.79  | 39.81  | 39.85  | 39.89  | 39.91  | 39.85  | 1       |  |  |
| Espesor Neto Prom - Hcs | Pies                                                                 | LogNormal | 9      | 12     | 17     | 23     | 26     | 17     | 2       |  |  |
| NTG                     | %                                                                    | Lognormal | 22     | 30     | 43     | 58     | 65     | 43     | 2       |  |  |
| Factor Geométrico       | %                                                                    | Normal    | 100    | 100    | 100    | 100    | 100    | 100    | 1       |  |  |
| Porosidad               | %                                                                    | Normal    | 25.1   | 26.1   | 29.2   | 32.4   | 33.8   | 29.2   | 1       |  |  |
| So                      | %                                                                    | Normal    | 50     | 53     | 62     | 72     | 75     | 63     | 1       |  |  |
|                         |                                                                      |           | 0      | 0      | 0      | 0      | 0      | 0      | 1       |  |  |
| Bo                      | BLS/STB                                                              | Normal    | 1.0226 | 1.0240 | 1.0280 | 1.0320 | 1.0334 | 1.0280 | 1       |  |  |
| r                       | %                                                                    | 1         | 0      | 0      | 0      | 0      | 0      | 0      | 1       |  |  |
|                         |                                                                      |           |        |        |        |        |        |        |         |  |  |
| OOIP                    | MMBLS                                                                | LogNormal | 195.70 | 272.14 | 406.46 | 579.48 | 712.25 | 417.8  | 2       |  |  |

#### ROZ (Residual Oil Zone)

| ·                       | P          | ARÁMETROS PA | RA EL CÁLCULO | DE RECURSOS | DEL PROSPECTO | MERLIN-ROZ |        |        |         |  |  |
|-------------------------|------------|--------------|---------------|-------------|---------------|------------|--------|--------|---------|--|--|
| FORMACIÓN SSBO          |            |              |               |             |               |            |        |        |         |  |  |
| PARÁMETROS              | Unidad     | Distrib.     | P99           | P90         | P50           | P10        | P1     | Mean   | P10/P90 |  |  |
| Volumen Roca - Hcs      | K Acre-Pie | LogNormal    | 394           | 400         | 409           | 418        | 425    | 409    | 1       |  |  |
| Area Promedio           | Acres      | LogNormal    | 16,453        | 16,678      | 17,010        | 17,325     | 17,561 | 17,007 | 0       |  |  |
| Espesor Gross Prom      | Pies       | LogNormal    | 24.00         | 24.01       | 24.03         | 24.11      | 24.21  | 24.05  | 1       |  |  |
| Espesor Neto Prom - Hcs | Pies       | LogNormal    | 5             | 7           | 10            | 14         | 16     | 10     | 2       |  |  |
| NTG                     | %          | Lognormal    | 22            | 30          | 43            | 58         | 65     | 43     | 2       |  |  |
| Factor Geométrico       | %          | Normal       | 100           | 100         | 100           | 100        | 100    | 100    | 1       |  |  |
| Porosidad               | %          | Normal       | 25.1          | 26.1        | 29.2          | 32.4       | 33.8   | 29.2   | 1       |  |  |
| So                      | %          | Normal       | 34            | 37          | 45            | 53         | 56     | 45     | 1       |  |  |
|                         |            |              | 0             | 0           | 0             | 0          | 0      | 0      | 1       |  |  |
| Bo                      | BLS/STB    | Normal       | 1.0226        | 1.0240      | 1.0280        | 1.0320     | 1.0334 | 1.0280 | 1       |  |  |
|                         | %          |              | 0             | 0           | 0             | 0          | 0      | 0      | 1       |  |  |
| -                       |            |              |               |             |               |            |        | -      |         |  |  |
| OOIP                    | MMBLS      | LogNormal    | 79.68         | 111.81      | 171.66        | 242.26     | 301.83 | 175.1  | 2       |  |  |

- These tables show the OOIP for the MPZ and ROZ respectively
- The mean for the MPZ is 417,8 MMBLS
- The mean for the **ROZ** is **175,1 MMBLS**







## TRASGO (CPO 17-2)









- Trasgo evaluation area is bounded by a polygon located in the municipalities of Mapiripán y San Martín in the Meta Department
- The area was in exploration activity carried out by Ecopetrol from 2011 to 2016
- Initially the contract was known as Caño Sur







#### Trasgo – 1

- The well Trasgo 1 was drilled in 2011 by Ecopetrol with a TD of 2934'
- It discovered a hydrocarbon accumulation in a structural trap associated to a high angle reverse fault that juxtaposes the sandy Carbonera intervals with the shaly ones
- The well DSTs produced 5471 bbl of fluid with 1240 bbls of oil (14,6° API) and 4,231 of formation water (208,6 ppm Cl-)
- During the extended test the well produced 55 bopd

#### Reto - 1

- The well Reto 1 was drilled in 2012 by Ecopetrol with a TD of 2090'
- The target of the well was proving the Oligocene basal sands in a structure that consists in a combined trap with closure against El Viento Fault (E) and onlapping against Paleozoic (W)
- The thickness expect of the unit was not found







Hole

CALL

88

lugose H

IN 18





LongTE Volumetrics FEL\_Desori Litho-Curves Image4 Lithe Curves Depth Mnerslogy Correlation Repistivity Nucleares inege Travel Time Unhyarte MD SAC\_Perce(NIA) 0.000 100 1111 SP RT(ATS0) NPH DT24A(NA) (Unore) State FBL\_Inter Pecado Dinemic L Description MV CHMM -100 154 -0.08 50 301 ......... TVDSS> COR(HCOR) TNPH DT(DTCO) Core\_Por(NA) AHTEO(ATEO) Kaolinita Sall-Coal? GAR 150 CHMM 0.54 CFCF -0.05 300 50 ...... RHOB(RHOZ) ROP(N/A) OR AHT30(AT30) DT24S(NIA) Vahl Ciorão Calcareo Sandstone GAPI 150 1.75 G/C3 2.75 CHMM ..... 500 300 50 9 Firt Oay BWW TEMP(N/A) SOR(N(A) AHT20(AT20) PHAXE DTSM(N/A) Miled Voninorillonite ALC: NO A 24 2770 2780 ..... 2790 2800 2810 2820 2830 2840 31110111 Paleopoico 2860 Ξ 2870 -2200 2880



### Structural Map: Top Oligocene Basal Sands and Volumetrics





- As Trasgo has not been declared a commercial field yet, there are no reserves reported
- Based on the interpretation of the 3D seismic survey Trasgo 2D, and the data acquired by the wells Trasgo-1, Trasgo-2 & Trasgo-3, **0,415 MMbbl** of contingent resources were calculated



#### **Volumetrics Summary**





- Rio Ariari has a reported OOIP value of 1,805 • MMbbl
- Avellana does not have a calculated OOIP or . estimated reserves
- Merlin has an OOIP for the Main Producer Zone • of 417,8 MMbbls and in the Residual Oil Zone of 175,1 MMbbls
- In Trasgo 0,415 MMbbl were calculated as • contingent resources





- The ANH has presented three areas that are located into the trend known as the Heavy Oil Belt. Those areas are CPO 16, CPO 17-1 and CPO 17-2
- Most of the areas have had an exploratory activity with proven oil systems. Due to oil prices and development of heavy oil reservoirs most of them were not declared commercial
- As result of the exploratory activity the areas are well covered with 2D seismic surveys and 4 3D seismic surveys located in what are thought as prospective areas
- The exploration led to the definition of 4 potential areas, one of them a truly developed field: Rio Ariari, Avellana (Chiguiro), Merlin & Trasgo
- The main reservoirs are located in the lower Mirador and lower Carbonera. However there is a chance of having a huge gas potential into the Palaeozoic sequence
- The areas of Rio Ariari and Merlin have an OOIP of 1,805 MMbbl and 592,9 MMbbl respectively, while the area of Trasgo has calculated contingent resources of 0,415 MMbbl